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Abstract-A new numerical simulation of the hyperbolic heat conduction problem is investigated. The 
primary difficulty encountered in the numerical solution of such a problem is numerical oscillations in the 
vicinity of sharp discontinuities. In this work, it is shown that the hybrid technique based on the Laplace 
transform and control volume methods can successfully be applied to suppress these oscillations. The 
Laplace transform method is used to remove the time-dependent terms, and then the transformedequations 
are discretized by the control volume scheme. Various comparative examples involving a nonlinear problem 
with surface radiation and the hyperbolic heat conduction in a composite region are illustrated to verify 
the accuracy of the present method. Due to the application of the Laplace transform method, the present 

technique does not need to consider the effects of the Courant number on the numerical results. 

INTRODUCTION 

IT IS WELL known that the solution obtained from the 
classical Fourier heat conduction equation exhibits 
infinite propagation velocity of thermal waves. Despite 
this physically unrealistic notion of instantaneous 
energy diffusion, the Fourier heat conduction equa- 
tion gives quite excellent approximations for most 
engineering applications. However, this classical heat 
&nduction theory breaks down when one is interested 
in transient heat flow in an extremely short period of 
time or for very low temperatures near absolute zero, 
such as cryogenic engineering, laser-aided material 
processing, the high-intensity electromagnetic ir- 
radiation of a solid and the high-rate heat transfer 
in rarefied media [l]. Under these circumstances, the 
theory with the finite propagation velocity of thermal 
wave will become dominant. Thus a more precise heat 
flux model needs to be postulated. Vernotte [2] and 
Cattaneo [3] suggested a modified heat flux model in 
1958. Successively, various problems involving the 
hyperbolic heat conduction have been solved by 
using various analytical and numerical schemes [4--141. 
However, it is difficult to apply the analytical scheme 
to investigate problems with a complicated geometry 
or with variable thermal properties. This explains why 
there has been a growing interest in the numerical 
scheme for the hyperbolic heat conduction in recent 
years [4]. The major difficulty encountered in the 
numerical solution of such problems is numerical 
oscillations in the vicinity of sharp discontinuities. 
Carey and Tsai [4] applied the central and backward 
difference schemes to examine error oscillations for 
the numerical solution of propagating heat waves 
reflected at a boundary. Spurious oscillations for the 
central difference and the excessive diffusions for the 
backward difference in the solutions can be observed. 
Glass et al. [5j used MacCormack’s predictor-cor- 

rector scheme to solve the same one-dimensional 
problem. The accuracy was substantially increased 
when compared to that of Carey and Tsai [4]. 
However, we can still observe some numerical oscil- 
lations in the vicinity of sharp discontinuities. Fur- 
thermore, in their work [S] the numerical calculations 
are performed by using 1000 mesh intervais and a 
Courant number of about unity. Subsequently, Glass 
et al. [6] also used the same technique to solve hyper- 
bolic heat conduction with surface radiation. As 
stated by the authors [6], due to the presence of non- 
linear terms in the problem, a smaller Courant number 
was required to decrease the number and amplitude 
of numerical oscillations. On the other hand, the 
larger the nonlinearity, the smaller the value of the 
Courant number. However, with a decrease in the 
value of the Courant number, the number and ampli- 
tude of numerical oscillations increased because the 
magnitude of the truncated error terms increased. 
Thus the modified equation must be used. It is a 
pity that their numerical results [6] still contained the 
oscillatory spike at the wave front. Additionally, in 
their work 1000 time steps were used to compute the 
hyperbolic solutions. Tamma and Railkar [I were 
successful in overcoming sharp discontinuities by 
using specially tailored transfinite-element formu- 
lations. They used the general solution of the trans- 
formed equation as the shape function in their for- 
mulations. But, the authors did not show that the 
general solution for other specific problems cannot be. 
found, such as nonlinear problems. Maybe, due to the 
above reason, Tamma and D’Costa [8] introduced the 
other technique based on the Galerkin finite element 
method and the mixed implicit+xplicit scheme to 
analyze hyperbolic heat conduction problems. All 
illustrated examples evaluated in this paper .[8] 
employed a refined mesh of 500 linear two-noded 
elements with At = 0.001. Yang [9] appbed the 
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NOMENCLATURE 

c propagation velocity of thermal wave s Laplace transform parameter 

CP specific heat T temperature 

-8 dimensionless radiation parameter t time 

F dimensionless surface heat flux s space variable. 
F dimensionless surface heat flux in the 

transform domain 

.: 

surface heat flux Greek symbols 

r reference heat flux CI thermal diffusivity, k/pc,, 

Y heat source a, surface absorptivity 
G dimensionless heat source, 4ag/cf, 4 dimensionless space variable, cx/2u or 
k thermal conductivity c ,.r/2c( , 
1 dimensionless distance between two 0 dimensionless temperature. Tkc/a J; 

nodes B dimensionless temperature in the 
1* width of pulsed energy source transform domain 

4 heat flux /? (s2 + 2s) I’? 
dimensionless heat flux, q/J i’ dimensionless time, c’t/2a or c: t/2a I 
dimensionless heat flux in the transform p density 
domain CT Stefan-Boltzmann constant. 

characteristic method in conjunction with the high- 
order total variation diminishing schemes to suppress 
numerical oscillations. It can be seen from his work 
that a finer grid was still required. 

In the numerical computation of this scheme, the 
value of the Courant number was 0.4, but the number 
of control volume cells varied with the investigated 
problems. In their illustrative problems the number 
of control volume cells was 100 and 400, respectively. 
The purpose of the present study is to provide an 
alternative approach for determining an accurate 
solution of hyperbolic heat conduction problems 
without numerical oscillations. In the present for- 
mulation, the Laplace transform method is used to 
remove the time-dependent terms from the governing 
equations, and then the discretized expression of the 
transformed equations is derived by using the control 
volume method. The shape function within the ith 
control volume [x_ , , xi+ ,] is derived from the associ- 
ated homogeneous equation of the transformed equa- 
tion. It is obvious that this technique is different from 
that of Tamma and Railkar [7]. 

MATHEMATICAL FORMULATION 

The one-dimensional energy conservation equation 
is given by 

PCp g = - 2 +g(x, t) 

where p is the density of the medium, c,, the specific 
heat, q the heat flux and g the heat source term per 
unit volume. 

To accommodate the finite propagation speed 
of the observed thermal waves, Vernotte [2] and 

Cattaneo [3] formulated a modified heat flux descrip- 
tion in the form 

where T is a relaxation parameter and is defined as 

k T=“=-__ 
$ pcpc2 

where c is the propagation speed of the thermal wave. 
For convenience of numerical analysis, the fol- 

lowing dimensionless parameters are introduced : 

%I Q = y and G = _--~ 
f r CL 

where x is the space variable and f; a reference heat 
flux. 

Thus equations (1) and (2) are now given in the 
dimensionless form as 

and 

aQ -+2Q= _;.; (6) 

Elimination of the dimensionless heat flux Q between 
equations (5) and (6) leads to a dimensionless descrip- 
tion of the hyperbolic heat conduction equation as 

(7) 
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In all illustrative exampies of this paper, the dimen- where N,(z) and N2(z) are denoted as the hyperbolic 
sionless initial conditions are given by shape functions and are given by 

WA 11) = 0 

$O,,) = 0. (8) 

N (z) _ sinh W-41 
1 - sinh (U) ’ 

N2(z) = sinh [@I -41 
sinh (U) . 

(14) 

Various types of the boundary conditions will be Similarly, the analytical solution of equation (I 1) 

discussed in the following individual examples. in the interval [vi_, , r,+,] is 

&?> = N&,)4- I +~2h,- ,%. (1% 

SOLU~ON IVIETHOD It is evident that the selection of the hyperbolic shape 

To remove the <-dependent terms, taking the 
function in the present scheme is not the general solu- 

Laplace transform of equation (7) with respect to l 
tion of the governing differential equation (9). More- 

gives 
over, this basic concept is also different from that of 
Tamma and Railkar [7]. 

Integration of equation (9) within the ith control 
(9) volume [vi_ ,,2, vi+ ,,J can be written as 

where s is the Laplace transform parameter. e” is the 
Laplace transform of the dimensionless temperature 
B and is defined as 

~(~,~) = 
c 

m e-“r @(q, g) d& (10) 
0 

As stated by Tamma and Railkar 171, the selection 
of the shape functions in the transform domain that 
are functions of the space variables is an important 
step for accurately predicting the propagation of ther- 
mal waves. Maybe the shape function in the transform 
domain can arbitrarily be chosen for general thermal 
problems. However, the selection of the shape func- 
tions in the transform domain should be careful for 
certain special problems, such as the hyperbolic heat 
conduction model. Otherwise, a poor selection of the 
shape function wifl affect the accuracy of the numeri- 
cal results. This fact will be presented in the first 
illustrative example of this paper. The following illus- 
tration wilI describe its basic concepts. First, consider 
the associated homogeneous second-order ordinary 
differential equation of the form as : 

d’& 
T-N=0 9i<<‘I<‘;+,, i=1,2 ,...( n-l 
d? 

and 

[I:i’ E-J28+(; + l)&)]drl = 0 (16) 

where Q+ 112 = (Vi+qi+ d/2. 
It is evident that equation (16) can be rewritten as 

=- 

Inserting the approximation for e”, equations (13) and 
(15), and evaluating the resulting integral produces 
the following discretized form : 

e:._ , - 2 cash (U)& + 6, , 

= 

The hyperbolic functions, cosh(ill) and sinh (AZ), in 
equation (18) can be expressed in a series form as 

cosh(II) = l+;(n/)2+O(A(l.l)4) (19) 

(11) 
sinh (A/) = AZ+ U(A(Z) ‘). (20) 

where I = (s2+2s) I/* The following simple notations 
With the respectiveerrors of O(A(11)4) and 0(A(lZf)3) 

. 
must be used : 

for cash (at) and sinh (al), the finite-difference form 
of equation (18) can be written as 

i&J=&, &(Q+,)=&+, and l=~i+r-~i. 

(12) 
~._,+(-2-121Z)8,+&j+, = -12 ;+1 

( > 
%(?#Q). 

The analytical solution of equation (11) in the interval 
[r,r,, vi+ ,] with boundary condition (12) is 

(21) 

Equation (21) is just the central-difference formula- 
tion of equation (5). Moreover, it also is a special case 
of equation (18). 

Due to the use of the linear shape function, the 
following approximations are obtained as (see ref. 

(13) VW 
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de” e -e, 

drl ‘ii+, I 
= ‘I!+- and 

Substituting equation (22) into equation (17) leads to 
the discretized expression of equation (9) as 

The rearrangement of equation (18) or (21) or (23) in 
conjunction with the prescribed boundary conditions 
can yield the following vector-matrix equation : 

rlrli~i = w (24) 

where [K] is an (n x n) band matrix with complex 
numbers, {p} is an (n x 1) vector representing the 
transformed nodal temperature and {ff is an (n x 1) 
vector representing the forcing terms. The nodal 
~mens~on~ess tern~~dture 0, can be dete~ined by 
using the application of the direct Gaussian-elim- 
ination algorithm and the numerical inversion of the 
Laplace transform technique [ 161. 

ILLUSTRATIVE EXAMPLES 

Various examples will be investigated as evidence 
to the accuracy and efficiency of the present numerical 
scheme for the hyperbolic heat conduction problems. 
All the computation is performed on a PC with an 
80486 microprocessor and the program is written in 
FORTRAN. 

Example 1 : in a senti-injinite body 

This example concerns a one-dimensional hyper- 
bolic heat conduction in a semi-infinite medium with 
constant thermal properties and with a uniform initial 
temperature T = 0. Suddenly, the wail at .Y = 0 is 
impulsively stepped to a fixed temperature. In other 
words, the dimensionless boundary conditions can be 
written as 

B=l at q=O 

040 as q-+x’. (25) 

This problem has been analytically investigated by 
Baumeister and Hamill [lo] using the Laplace trans- 
form method. Figure 1 shows a comparison between 
the analytical solutions of Baumeister and Hamill [lo] 
and the present results with the formulation of equa- 
tion (18). It can be seen that the present numerical 
solution agrees well with the analytical solutions and 
does not exhibit numerical oscillations at the wave 
front. Figure 2 depicts the difference between the ana- 
lytical solutions and the numerical results with the 
formulations of equations (21) and (23). As shown in 

Baumcistar and Iiamill [lo] 
Present work (101 nodes) 
Present work (11 nodes) 

0.8 

0.6 

6 

0.4 

0 0.5 1.0 1.5 2.0 2.5 

? 

FIG. 1. A comparison of the dimeI]sioniess tem~rature dis- 
tribution in a semi-infinite medium for various <. 

Fig. 2, the numerical results using the control volume 
method with a linear shape function and the central- 
difference method have numerical oscillations at the 
wave front. Comparison of the dimensionless tem- 
perature shown in Figs. 1 and 2 demonstrates that 
the selection of the shape functions in the transform 
domain that are functions of the space variables is an 
important task for accurately predicting the tem- 
perature distribution of the hyperbolic heat con- 
duction problem. This comparison also implies that the 
hyperbolic shape function is a best choice for the 
present study. Thus the present scheme with the 
hyperbolic shape function will be applied to solve 
other illustrative examples to prove its accuracy. The 
IOl-node modelting with the uniform space size is 

0.8 

0.6 

0.4 

e 
0.2 

o Baumeiartcsr and Hamill 
- Equation (21) 
- - Equation (23) 

1101 

FIG. 2. A comparison of the dimensionless temperature dis- 
tribution in a semi-infinite medium for various 5. 
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Table 1. Practical penetration length for various non-homogeneous materials at 
t =,r 

Material 

Thermal Propagation Relaxation Penetration 
diffirsivity velocity parameter length 

CL (mm2 s-‘) c (mm s- ‘) r (s) x (mm) 

H acid 0.260 0.103 24.5 2.52 
NaHCO, 0.310 0.104 28.7 2.98 
Sand 0.408 0.143 20.0 2.85 
Glass ballotini 0.251 0.152 10.9 1.65 
Ion exchanger 0.220 0.064 53.7 3.44 

required for obtaining the numerical results shown in 
Figs. 1 and 2. In effect, using 11 grid points can also 
produce excellent results except in the vicinity of sharp 
discontinuity, as shown in Fig. 1. The reason is that 
the thermal shock occurs only in an infinitesimal 
region. Moreover, this infinitesimal region is smaller 
than the space size in the II-node modelling. To 
further prove the accuracy of the present method in 
conjunction with the unite-different fo~ulation of 
equation (IX), the following examples will be illus- 
trated by using 101 grid points. 

For homogeneous materials, such as pure liquids, 
gases and dielectric solids, the values of z range from 
10-r* to lo-* s [17]. Thus, it can be found from 
equation (4) that the practical length and time are 
small for the present problem. However, it can also 
be found from the work of Kaminski [18] that the 
values of z might be significantly larger for materials 
with a non-homogeneous inner structure. Based on 
the data of Kaminski [18J, Table 1 shows the practical 
penetration length of the thermal wave at I = r 
(r = 0.5) for various non-homogeneous materials. 

Example 2 : in a$nite slab 
This second illustrative problem concerns a finite 

slab subjected to the dimensionless boundary con- 
ditions specified in the following 

@(O,<) = f and E(1.l) = 0. (26) 

The analytical solution of this problem has been given 
by Carey and Tsai [4] using the Laplace transform 
method. The numerical solutions of this example have 
also been obtained by Carey and Tsai [4], Glass et al. 
[S] and Tamma and Railkar f7]. Tamma and Railkar 
[7] can be successful in capturing sharp discontinuities 
of this problem by using specially tailored transfinite 
element formulations. In their finite element tech- 
nique, the hyperbolic shape function is also used as 
the shape function. But, the shape function chosen 
by the authors [7] must be the general solution of the 
hyperbolic heat conduction equation in the transform 
domain. Thus using the technique proposed by 
Tamma and Railkar [7] to analyze nonlinear hyper- 
bolic heat conduction problems can be a difficult task. 
Conversely, the present scheme has not this limitation. 
It should be noted that the shape functions chosen by 
Tamma and Railkar {7] are just the same as those 

shown in the present study only for some linear prob- 
lems without the source term. Figure 3 shows a com- 
parison of the ~rn~~t~e dist~bution between the 
analytical solutions [4] and the present results using 
the hyperbolic shape function for various dimen- 
sionless times. It is seen that excellent agreement is 
obtained between them. Furthermore, numerical 
oscillations in the vicinity of sharp discontinuity are 
also not found in the present results. In particular, the 
temperature profiles for 5 = 2 and 2.5 are interesting. 
In these cases, the temperatures in the slab are above 
surface temperature (0 = 1). This phenomenon can 
classically be admitted for propagating waves, but it 
is hard to believe that this phenomenon can also occur 
in a temperature field. Thus Taitel [l I] suggested a 
discrete fo~ulation of the heat conduction equation 
to explain this dilemma. 

Example 3 : with a pulsed energy source 
The third example considers the propagation and 

reflection of thermal waves in a finite medium with 
two insulated boundary surfaces and subjected to a 
pulsed energy source. The pulsed energy source is 
released instantaneously at t = 0, in a region adjacent 

1.0 

0.8 

0 0.6 

0.4 

FIG. 3. A com~rison of the dimensionless titrate dis- 
tribution in a slab for various 5. 
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0 &irik and Vick [12] 
- Present work 

0.8 1.0 

FIG. 4. A comparison of the dimensionless temperature dis- 
tribution with a pulsed energy source for various 5. 

to the boundary surface at x = 0. The dimensionless 
form of the pulsed energy source can be given by 

~ o<q<1* 
(27) 

where 6(t) is the Dirac delta function. 
For the numerical calculations, we take I* = 0.02. 

ijzisik and Vick [12] have developed the analytical 
solutions for the temperature field and heat flux dis- 
tribution using the finite integral transform. Sub- 
sequently, Tamma and Railkar also solved the same 
problem using the specially tailored transfinite- 
element method [73. But, the authors [7] did not show 
the form of the shape function for this example. Com- 
parison of the dimensionless temperature distribution 

between the present results using the hyperbolic shape 
function and the analytical solutions [ 121 is shown in 
Fig. 4. The present results are in good agreement 
with the analytical solutions [12] and do not reveal 
numerical oscillations in the vicinity of sharp dis- 
continuities. 

Example 4 : with surface radiation 

The fourth example is the same as Example 1 except 
that the left boundary surface at x = 0 is subjected to 
a heat flux f (t) and dissipates heat by radiation into 
the ambient at temperature T,,. Thus the boundary 
condition at x = 0 can be written as 

4 = a,a( T: - P) +,f(r) at x = 0 (28) 

where c(, is the surface absorptivity and c the Stefan- 
Boltzmann constant. The following dimensionless 
parameters are introduced in this example : 

u,cXi4f: 
E, = ~ 

k4e4 
and F(t) = m. 

f 
(29) 

r 
For simplicity, we take T, = 0. Thus the dimen- 
sionless form of equation (28) can be written as 

Q = -E,O’+F(l) at ye = 0. (30) 

The application of the Taylor’s series approxi- 
mation to linearize the nonlinear term 0’ leads to the 
linearized form of equation (30) as 

Q = -E,(41j30-384)+F(5) at q = 0 (31) 

where 0 is the previously calculated surface tempera 
ture. The Laplace transform of equation (31) is 

Q = -&(48jR- 3;)+&,. t.32) 

Taking the Laplace transform of equation (6) and 
substituting equations (13) and (32) into the resulting 
equation produces the following discretized form : 

F 

sinh (I/) 
-cash (,I/) - 4 ~ 

i. 
(s+2)E& 

1 
8, +e”, 

sinh (21) 
= - ___ (s+2)(3E,&+ 1). 

is 
(33) 

In the present problem, the dimensionless boundary 
heat flux F(t) is taken equal to unity. Glass et al. [6] 
utilized MacCormack’s predictor-corrector method 
to solve this example. As stated by them [6]. the 
nonlinearity affects the stability of their scheme. 
Thus the value of the Courant number used with 

MacCormack’s predictor-corrector methods must be 
adjusted. Their numerical results still exhibited oscil- 
lations near the wave front though. Subsequently, Wu 
[13] used the Laplace transform method in con- 
junction with the method of successive approxi- 
mations to predict the temperature distributions. Wu 
[I 31 stated that the selection of the initial approxi- 
mation must be very close to the analytical solution 
when the method of successive approximations was 
applied to solve some higher-order nonlinear prob- 
lems. The results obtained by Wu [ 131 did not reveal 
numerical oscillations in the vicinity of sharp dis- 
continuities. Thus Fig. 5 only shows a comparison of 
the present results using the hyperbolic shape function 
with those obtained by Wu [13]. As shown in Fig. 5. 
there is no remarkable difference between them. This 
conclusion implies that using the formulation of equa- 
tion (18) to solve hyperbolic heat conduction prob- 
lems with surface radiation still has good accuracy. 

Example 5 : in composite regions 
The last example considers a hyperbolic heat con- 

duction problem in a two-region composite slab. The 
left boundary surface at x = 0 is kept at a fixed tem- 
perature and the right boundary surface is assumed 
insulated. Thus the dimensionless boundary con- 
ditions at these two boundary surfaces can be written 
as 

e(O,t) = 1 and $(l,,) = 0 
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0 Wu[13] 
- Prarent work 

I I I I I I I 
0 0.1 0.2 0.3 0.4 0.5 0.6 

r( 

FIG. 5. A comparison of the dimensionless temperature dis- 
tribution for various E, at 6 = 0.5. 

where C: and q in this example are again defined as: 
5 = c,x/2u, and q = c:t/2u,. 

At the interface of the two regions, two boundary 
conditions are required. Due to the assumption of 
perfect thermal contact, temperature and heat flux 
must be compatible at the interface. In other words, 
two boundary conditions at the interface with the 
dimensionless parameters of equation (4) can be 
expressed as 

(34) 

Thus the dimensionless interface condition using 
equation (5) can be written as [ 141 

at ? =: rlin (35) 

where the dimensionless parameters are defined as 
I& = k2/k,, Z, = E2/E2, Ez = az/al and E2 = (c~/c,)*. 
It can be seen from equation (35) that the derivative 
d&d? at the interface is not continuous. Taking the 
Laplace transform of equation (35) and then sub- 
stituting equations (13) and (1.5) into the resulting 
equation leads to the following expression : 

1 c g_, - ;I- f s 
sinh (21) ( ’ f2) 

cash (&I) 
+I&& 

smh (1J) (s+2) 1 ’ 

*&~sfZ) 1 4+, =o at v = Tin (36) 2 

I , I , I I 
0 0.2 0.4 0.6 0.8 1.0 

1 

FIG. 6. A comparison of the dimensionless temperature dis- 
tribution for & = 2, C2 = 1 and E2 = 1 at 5 = 0.7, 1.8. 

Frankel et ai. [ 141 used the generalized finite integral 
transform technique to analyze this problem. Com- 
parisons between the present results using the for- 
mulation of equation (18) and those obtained by 
Frankel et al. [14] are shown in Figs. 6 and 7. Excellent 
agreements are observed in the figures. The present 
method using the formulation with the hyperbolic 
shape function also has good accuracy for hyperbolic 
heat conduction problems in composite regions. 

CONCLUSlONS 

The hybrid appli~tion of the Laplace transform 
and control volume methods in conjunction with the 

e 

0 0.2 0.4 0.6 0.8 1.0 

0 Prulkel et al. 1141 

- Prewnt work 

FIG. 7. A comparison of the dimensionless temperature dis- 
tribution for & = 1, E2 = 1 and various C2 at t; = 0.2,0.7. where 1, = (f2s2 + 2s) li2. 
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hyperbolic shape function introduced in this paper 
provides an excellent result for hyperbolic heat con- 
duction problems. This hyperbolic shape function 
is obtained by solving the associated homogeneous 
solution of the transformed equation in the space 
domain. It is seen from results of five different illustra- 
tive examples that this hybrid scheme can give both 
oscillation-free and highly accurate results. Due to 
the application of the Laplace transform method with 
respect to time, the use of the present scheme does not 
need to consider the effects of the Courant number on 
the numerical results. 
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3. 

4. 
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